A Framework for Developing Clinical Measures to Support Long-term Follow-up of Patients with Inborn Errors of Metabolism Hernandez M¹, Chakraborty P^{1,2}, Kronick J³, Potter BK⁴, Chan AKJ⁵, Coyle D⁴, Dyack S⁶, Feigenbaum A³, Geraghty MT^{1,2}, Karaceper M⁴, Khan A⁷, Little J⁴, MacKenzie J⁸, Maranda B⁹, Mhanni A¹⁰, Mitchell G 11, Mitchell J 12, Potter M 13, Prasad C 14, Siriwardena K 3, Stockler S 15, Trakadis Y 12, Turner L 16, Vallance H 17, Wilson B 4, Wilson B 18, on behalf of the Canadian Inherited Metabolic Diseases Research Network (CIMDRN) 1 Newborn Screening Ontario 2 Children's Hospital of Eastern Ontario 3 Hospital for Sick Children, University of Ottawa 5 University of Alberta 6 IWK Health Centre 7 Alberta Children's Hospital 8 Kingston General Hospital 9 CHU Sherbrooke 10 HSC Winnipeg 11 CHU Ste-Justine 12 Montreal Children's Hospital 13 McMaster Children's Hospital 16 Janeway Children's Health Centre 17 University of British Columbia 18 Ottawa Hospital Research Institute ## Background #### Newborn screening and inborn errors of metabolism - Newborn screening programs aim to identify babies with rare, treatable conditions, such as inborn errors of metabolism (IEM) - Important to obtain a timely diagnosis and implement effective disease management - Successful in reducing mortality and severe morbidity - Scientific investigations have led to earlier detection, improved biological understanding and corresponding development of new therapeutics for IEM - With the advances in newborn screening and discoveries through scientific research, many diagnosed IEM patients have increased lifespans with fewer severe sequelae - A current priority is longitudinal follow-up of IEM patients postscreening and diagnosis to evaluate outcomes and inform care # Value of Robust Clinical Follow-up Data - IEM are rare and clinically heterogeneous: robust longitudinal clinical data are sparse and can be challenging to gather and interpret - Collaborative, multi-center research is an important tool for evaluating health care for individuals with rare diseases: permits more robust study designs with larger samples and greater statistical power for investigating clinical effectiveness - Multi-center collaboration also affords opportunities to take advantage of "natural experiments": - Evidence of substantial variation in both treatment practices and outcomes for IEM across centers, in Canada and elsewhere (Potter et al., 2012, GIM; Potter et al., 2012, JIMD) - "Practice-based evidence": clinical evaluative research in a realworld setting: rigorous observational evidence (Westfall et al., 2008, JAMA; Horn & Gassaway, 2010, Med Care) - Collection of existing clinical information on care and outcomes, to identify patterns of interventions associated with better outcomes in particular groups of patients - A multi-center practice-based evidence program necessitates agreement among centers on a minimum dataset comprised of rigorous yet parsimonious measures of baseline and time-varying clinical variables and biomarkers - Such research also requires consensus case definitions or standardized collection of important diagnostic parameters # **Objectives** - The Canadian Inherited Metabolic Diseases Research Network (CIMDRN) is a national, multidisciplinary practice-based research network designed to develop the evidence needed to improve outcomes for children with IEM - As part of CIMDRN's program of research, our clinical data collection working group aims to identify meaningful longitudinal clinical outcomes and the intermediate indicators of disease management that will help us to predict such outcomes - Toward this goal, here we present a framework we have developed to guide the systematic collection of clinical data useful for longitudinal research within CIMDRN ## Methods #### **Network of centers** - Nearly all children diagnosed with IEM in Canada receive care from one of 16 Hereditary Metabolic Disease Treatment Centres, based at pediatric academic health sciences centres - CIMDRN's clinical investigators represent metabolic physicians based at nearly all (>14) of these treatment centres, working together with investigators in the clinical evaluative sciences - With foundational funding from the Canadian Institutes of Health Research (CIHR), we will collect retrospective and prospective clinical data for Canadian children receiving care at treatment centres, with consent #### **Disease List** #### TARGET INBORN ERRORS OF METABOLISM Amino acid / urea cycle disorders Phenylalanine hydroxylase (PAH) deficiency: phenylketonuria (PKU) and non-PKU hyperphenylalaninemia (non-PKU HPA), Arginase (AG) deficiency, Argininosuccinic acidemia (argininosuccinate lyase deficiency, ASA), Carbamyl phosphate synthetase (CPS1) deficiency, Citrin deficiency, Citrullinemia (argininosuccinic acid synthetase deficiency), Homocystinuria: CBS deficiency, Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, Maple syrup urine disease (MSUD), N-acetylglutamate synthetase (NAGS) deficiency, Ornithine transcarbamylase (OTC) deficiency, Tyrosinemia (Type I) Organic acid disorders ß-Ketothiolase (BKT) deficiency, Glutaric acidemia type I (GAI), HMG-CoA lyase Deficiency, Isovaleric acidemia (IVA), 3-Methylcrotonyl-CoA carboxylase (3MCC) deficiency, Methylmalonic acidemias (methylmalonyl-CoA mutase deficiency; cobalamin defects), Propionic acidemia (PA) Fatty acid oxidation disorders Medium chain acyl-CoA dehydrogenase (MCAD) deficiency, Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, Carnitine uptake defect (CUD), Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, Trifunctional protein (TFP) Other disorders Hurler disease (MPS 1), Pyridoxine-dependent epilepsy, Galactosemia (GALT), excluding epimerase and kinase deficiency, Glycogen storage disease type 1 (GSD1, types A and B), Multiple carboxylase deficiency (MCD)/Biotinidase deficiency Priority diseases (BOLD) for in-depth longitudinal data collection: - Challenges in diagnosis: for example, existence of "non-classic" cases of uncertain prognosis identified by newborn screening - Pressing questions regarding care - Known variation in interventions and outcomes - Policy relevance - For the remaining diseases, we will collect a "minimum" clinical dataset, to describe prevalence and diagnostic characteristics and to create a consent-based contact registry to support future research ## Data collection - Key sources will be from retrospective chart abstraction and prospective data entry during clinical encounters - Data will be collected on patient characteristics, clinical interventions, and outcomes - Secure electronic data capture tool: Research Electronic Data Capture (REDCap) ## Framework development Based in part on an environmental scan to identify related initiatives in Canada and internationally - Key initiatives/collaborations: - Newborn Screening Translational Research Network (NBSTRN) Longitudinal Pediatric Data Resource (LPDR) - Maternal Infant Child & Youth Research Network (MIYCRN) ## Framework - Longitudinal clinical measures categories: Clinical descriptors, Interventions, Confounders/Effect modifiers, Outcomes - The framework includes: - general/common and disease-specific data elements - baseline/constant and longitudinal/time-varying measures - Through baseline and time-varying collection of clinical descriptors, approach allows analysis of clinical heterogeneity, including outcomes associated with varying diagnostic categories - Inclusive case definitions designed to ascertain all individuals with a given diagnosis in order to include the full spectrum of clinical heterogeneity #### Minimum dataset (all diseases) | Demographics | Diagnosis | Secondary Diagnoses | | |-----------------------------|---|---|--| | General patient information | Definition should be broad so as to reflect clinical heterogeneity and be as inclusive as possible of individuals with possible health issues related to this IEM | Diagnoses resulting from complications of their primary diagnosis or treatment thereof, as well as unrelated acute or chronic diagnoses | | ### Longitudinal clinical measures (priority diseases) | CLINICAL DESCRIPTORS | INTERVENTIONS | CONFOUNDERS/ EFFECT MODIFIERS | OUTCOMES | | |--|--|--|---|--| | Variables informing diagnosis, tissue involvement, severity, and pathophysiology related to primary diagnosis and/or other acute/chronic diagnoses | Exposures that are manipulated by care providers to change natural history | Hypothesized variables associated with interventions and/or outcomes | Variables reflecting the health and functional status of the patient, including patient/family-centered variables | | # **Example Disease: Phenylketonuria (PKU)** | Demographics | Diagnosis | Secondary Diagnoses | |--|--|--| | Identifiers Family history Affected family members Socioeconomic status Treatment centre | Ascertainment Newborn screening Laboratory studies Phenylalanine Tyrosine Imaging studies Other diagnostic testing | Other chronic diagnoses Onset Severity Health care visits Acute/intermittent diagnoses | | CLINICAL DESCRIPTORS | INTERVENTIONS | CONFOUNDERS/ EFFECT MODIFIERS | OUTCOMES | |--|---|--|---| | Prenatal history Neonatal history Measurements Growth parameters Health status Laboratory studies: monitoring | - Care coordination (recommended/prescribed vs actual/adherence) - Pharmacotherapy - Nutrition - Phenylalanine - Protein - Formulas - Counseling - Home monitoring | Laboratory variables ex. plasma amino acids Nutrition ex. vitamins Imaging variables ex. white matter changes Education ex. parents' highest education level Health status ex. unrelated diagnoses Family structure ex. affected siblings Socioeconomic status ex. financial aid Geography ex. distance to treatment centre Treatment team members | - Health status - Development assessment - Education - School: placement/function/performance - Behavioral issues - Pharmacotherapy - Treatment - Complications - Complications - Complications of underlying disease - Biomarkers | # **Next Steps** - Develop data elements with operationalized definitions within the framework categories for all CIMDRN IEM targets - Finalize elements with consensus process including all participating metabolic disease centres - Translate framework into a database (REDCap) to collect clinical data # **Value and Contributions** - The framework supports practice-based evidence to overcome critical challenges of clinical longitudinal research on outcomes for IEM and other rare diseases - Consensus among multidisciplinary representatives from all hereditary metabolic disease centres in Canada - Tools can be adapted for other rare diseases in other jurisdictions **Funded by:**